Manufacturing Technology of Electronic ConnectoNews

2019-09-11 16:55:30

There are many types of electronic connectors, but the manufacturing process is basically the same. In general, Xia can be divided into four stages: Stamping, Plating, Molding, and Assembly.


1 stamping


The manufacturing process of the electronic connector generally begins with a stamped pin. Through large high-speed punching machines, electronic connectors (pins, terminals) are stamped from thin metal strips. One end of the large-volume metal strip is fed into the front end of the punching machine, and the other end is wound into the take-up reel through the hydraulic working table of the punching machine, and the metal strip is pulled out by the take-up reel and rolled out to punch out the finished product.


2 plating


After the terminal and pin are stamped, they should be sent to the plating section. At this stage, the connector's electronic contact surface will be plated with various metal coatings. The twisting, chipping or deformation of the pins occurs during the feeding of the punched pins into the plating equipment. These quality defects are easily detected by the detection techniques described in this article.However, for most machine vision system suppliers, many of the quality defects that occur during the plating process are also the "forbidden zone" of the inspection system. Electronic connector manufacturers want the inspection system to detect various inconsistencies such as small scratches and pinholes on the connector pin plating surface. Although these defects are easily identifiable for other products, such as aluminum can bottom covers or other relatively flat surfaces, visual inspection systems are difficult to obtain due to the irregular and angular surface design of most electronic connectors. It is enough to identify the images needed for these subtle defects.Since some types of pins need to be coated with multiple layers of metal, manufacturers also want the inspection system to be able to distinguish various metal coatings to verify that they are in place and in the correct proportions. This is a very difficult task for a vision system using a black and white camera, since the gray levels of the images of different metal coatings are practically similar. Although the color vision system's camera can successfully distinguish these different metal coatings, the problem of difficult lighting still exists due to the irregular angle and reflection of the coating surface.


3 injection molding


The plastic case of the electronic connector is made during the injection molding stage. The usual process is to inject molten plastic into a metal film and then rapidly cool it. When the molten plastic is not completely filled with the film, so-called "Short Shots" occurs, which is a typical defect that needs to be detected during the injection molding stage. Other drawbacks include the filling or partial blockage of the jacks (the jacks must be kept clean and clear for proper insertion with the pins during final assembly). The machine vision system for quality inspection after injection molding is relatively simple and easy because the backlight can be used to easily identify the missing and blocked jacks.

4 assembly


The final stage in the manufacture of electronic connectors is the assembly of finished products. There are two ways to insert the plated pins into the injection box holder: separate pairs or combination pairs. Separate plug-in means that each pin is plugged in; each time the plug-in is inserted, the pins are plugged into the box at the same time. Regardless of the type of plug-in, the manufacturer requires that all pins be tested for missing and properly positioned during the assembly phase; another type of routine inspection task is related to the measurement of the spacing on the mating surface of the connector.




As with the stamping phase, the assembly of the connector also presents a challenge in the detection speed for the automatic inspection system. Although most assembly line beats are one to two per second, the vision system typically requires multiple different inspection items for each connector that passes through the camera. Therefore, the detection speed becomes an important system performance indicator again.



fter assembly, the external dimensions of the connector are orders of magnitude greater than the dimensional tolerances allowed for a single pin. This also poses another problem for visual inspection systems. For example, some connector housings are more than one foot in size and have hundreds of pins, each of which must have an accuracy of a few thousandths of an inch. Obviously, a one foot long connector test cannot be performed on one image, and the visual inspection system can only detect a limited number of pin quality in a small field of view at a time. There are two ways to complete the detection of the entire connector: using multiple cameras (to increase the system cost); or continuously triggering the camera when the connector passes in front of a lens, the vision system "stitches" the continuously captured single-slice image To determine if the quality of the entire connector is acceptable. The latter method is the detection method commonly used by PPT visual inspection systems after connector assembly is completed.




The detection of "True Position" is another requirement of the connector assembly for the detection system. This "actual position" is the distance from the tip of each pin to a specified design reference line. The visual inspection system must make this imaginary baseline on the detected image to measure the "actual position" of each pin apex and determine if it meets the quality criteria. However, the reference point used to delineate this baseline is often invisible on the actual connector, or sometimes on another plane and cannot be seen at the same time in the same shot. Even in some cases the plastic on the connector housing has to be ground to determine the position of this reference line. There is indeed a related topic here - detectable design.

4.Detectability design (Inspectablity)


New machine vision systems are becoming more widely used due to the ever-increasing demands of manufacturers to increase production efficiency and product quality and reduce production costs. As various vision systems become more prevalent, people are becoming more familiar with the characteristics of such detection systems and have learned to consider the detectability of product quality when designing new products. For example, if you want a baseline to detect the "actual position," you should consider the visibility of this baseline in the connector design.


Tel
E-Mail
MAP
QQ